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Abstract—Large deflections of a clamped circular plate of variable thickness have been investigated following
the equations of Banerjee and Dutta, Numerical results obtained have been compared with other known
results.

INTRODUCTION

Thin plates of different shapes frequently occur in many structures and study of bending
properties of a plate is imperative to a design engineer. With the increased use of strong and
light weight structures, especially in aerospace engineering and in the study of vibrations of
machine parts, many problems of non-linear deformations naturally arise where the sup-
plementary stresses in the middle plane of the plate must be taken into account in deriving the
differential equations of plates.

The coupled non-linear partial differential equations for large amplitude axisymmetric
deformations were initially derived by von-Karman[1]. The von-Karman equations in the
coupled form are difficult to solve and different numerical methods have been followed by
Schmidt[2], Nash and Cooley[3], Nowinski[4] and many other authors for investigation of large
deflections of plates.

An approximate method for solving the large deflections of plates has been proposed by
Berger[5]. This method is based on the neglect of e,, the second invariant of the middle surface
strains, in the expression corresponding to the total potential energy of the system. An
advantage of Berger's method is that the coupled differential equations are decoupled if e, is
neglected. Nowinski[6], Nash and Modeer{7], Banerjee[8, 9], Sinha[10], Datta{11, 12] and many
other authors followed Berger’s method for solution of various large deflection plate problems
involving static, dynamic as well as thermal loadings with ease and sufficient accuracy.
Nowinski and Ohnabe[13] pointed out certain inaccuracies in Berger’s equations and concluded
that Berger's line of thought leads to meaningless results for movable edge conditions. This is
due to the fact that the neglect of e, for movable edges fails to imply freedom of rotation in the
meridian planes where the membrane stress

E [du  17dw\’ u
I = i-—v:[a“fi(zﬁ) * ”';}
exists. For movable edges the in-plane displacement u is never zero and thus Berger’s
equations lead to absurd results. On the other hand, for immovable clamped edge, u = 0 and
dw/dr =0 at the boundary and therefore, Berger’s equations give sufficiently accurate results.
For simply supported immovable edges, u = 0 but dw/dr# 0. Thus Berger’s equations give fairly
accurate results.

It is also interesting to note that under many loading conditions, especially uniform and
under relatively “smooth” and regular boundary conditions—the distortional energy and its
variation should be substantially smaller than the dilatiational. Hence the “Berger assumption”
which too simplistically has been translated into assuming a Poisson’s ratio of unity and hence
patently absurd. For this reason this assumption has always yielded reasonably good practical
results for the uniform, or smoothly varying loading. The circular plate is the best geometry, but
as any in-plane large distortional changes even in rectangular plates is usually confined to the
corners, reasonable results should also be expected there. On the other hand disparities such as
a movable boundary suggest large energy changes and the basic hypothesis becomes question-
able.

Banerjee and Datta[14] suggested a modified energy expression by bringing directly the
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expression for o,, in the total potential energy of the system. A new set of differential equations
has been obtained in a decoupled form. The accuracy of these equations has been tested for a
circular and a square plate under different boundary conditions and satisfactory results have
been obtained.

The equivalent hypothesis of the study[14] is that the radial stretching of the plate is
proportional to (dw/dr)”. This is certainly reasonable because under any type of loading and
under any boundary condition the extra strain imposed by bending is represented by (dw/dr)’.
Also this hypothesis has effectively linearised the problem by connecting the in-plane and
bending deflection. In fact, any hypothesis which connects the in-plane and bending deflection
should effectively linearise the problem. For example, in a somewhat similar case, if the
compressibility is assured, i.e. v = 1/2 (for rubber) then the first strain invariant must vanish—
thus prescribing a unique relation between u and w. It is further a point of interest that the
variational calculation and definition of the constant A has the physical nature of the in-plane
stress and this vanishes for the movabie boundary.

Plates of non-uniform thickness are sometimes encountered in the design of machine parts,
such as diaphragms of steam turbines and pistons of reciprocating engines. Investigations of
plates of non-uniform thickness based on linear theory have been done by many workers and
the bibliography of these workers are given in [15]. As far as it is known only one paper by
Banerjee[16] can be located where large deflection of a clamped circular plate of variable
thickness has been investigated using von-Karman’s equations.

In this paper the large deflection of a clamped circular plate of variable thickness has been
discussed following the line of thought as given in[14]. A new set of differential equations has
been formed in a decoupled form considering the plate thickness varying exponentially. The
results obtained have been given in tabular form and compared with other known resuits.

FORMULATION OF EQUATION

In polar co-ordinates, the total potential energy, V of a thin isotropic circular plate of radius
@, and of thickness h is given by

V‘Mf [( ) 2rv<‘ii:;(;_2rf+%(3w) +1F%{e12+2(v~l)ez}]rdruqurdr (1)

where D is the flexural rigidity of the plate given by D = ER’*[12(1 - v%), w is the deflection, v
Poisson's ratio, and e, and e, the first and second invariant of the middle surface strains

respectively given by
du  l7dw\® u
& —_117+§(dr) ty
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Here, u is the in-plane displacement and q is the uniform static load. Equation (1) may be
rewritten in the following form

vt 7o () Ry () ik
{e1“2+(1 - uz)-;,}]r dr— L " qwrdr 9

where

sl

If the term (1— v)(u¥r?) in (2) is replaced by (A/4)}dw/dr)* X being a factor depending on the
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Poisson’s ratio for the plate material, decoupling of (2) is possible. Introducing the term
M4(dw/dr)* in place of (1 - v)u?/r?, remembering the plate thickness h as a variable quantity
and applying Euler’s variational method to (2) one get the following differential equation,

d'w . d&’w [ 3dh
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where A is determined from
h[(;':+ + (‘Z‘;’) ] Ar, 4)

For movable edge, A=0.
A has been chosen approximately from the condition 3v/dA = 0 for minimum potential energy
v. For clamped edge it has been assumed that duf/dr =~ 1/2[1/2(dw/dr)*] and for simple-support

du/dr = 0. For clamped edge A =24, For simple support A = »*, » = Poisson’s ratio. Let

rZ 2
W= Wo[l - E’] )
for clamped edge at r = a. Let

h = hoe —%g{—z )

be the thickness variation. This type of variation is useful in design and has been discussed
fully in [15] for corresponding small deflection problem.
Putting (5) and (6) in (4) and integrating we get

2 -v=1 1 2
h0[7+v+3+v 5+v]. 7
o E m 1 ()

m2=0 (6) mQ2m +2v)

Putting (6) and (5) in (3) and applying Galerkin's procedure one gets the following cubic
equation determining W,
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Table 1.
A1 B] Al B 1
Immovable edge Present Movable edge Present
Boun;i_ary Present study and Present study and
condition  study  Ref.[16] Ref.{I6] 2 study  Ref. [16] Ref. [16]
Plate 0.46 0.471 0,17 0 0.12 0,146 0.171
Clamped 0.57 0.597 0.217 1 0.18 0.203 0.217
0.70 0.728 0.275 2 0.23 0.256 0.275
0.795 0.824 0.349 3 0.28 0.306 0.349
v=03
The above equation is of the following form
W, w,’ qa’
-4+ A = Bi=ra.
ho T AThe = BER ©

NUMERICAL RESULTS AND DISCUSSIONS

Numerical values of the co-efficients A; and B, in eqn (9) have been calculated for different
values of B and are presented in the following Table for comparison with other known results.

It is observed that the deflections are always higher than those obtained theoretically. It is
clear from the Table that the results of the present study are in very good agreement with those
obtained in [16] where von-Karman's equations have been employed and the method of solution
is laborious. The following are the advantages of the present study.

(1) Unlike von-Karman’s equations, the equations of the present study are decoupled and
hence they can be solved without difficulty.

(2) Unlike Berger’s equations, the equations of the present study are valid both for movable
and immovable edge conditions.

(3) The results can be obtained with ease and accuracy and without much computational
labour.

(4) From the same cubic equation determining wy, the results of both movable and
immovable edge conditions can be obtained.
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